Bandwidth Selection for Fixed-Kernel Analysis of Animal Utilization Distributions
نویسنده
چکیده
In studies of animal space use, researchers often use kernel-based techniques for estimating the size of an animal’s home range and its utilization distribution from radiotracking data. However, the kernel estimator is highly sensitive to the bandwidth value used. Previous ecological studies recommended least-squares cross-validation (LSCV) as the default bandwidth selection method, but some statisticians consider this technique inferior to newer methods. We used simulations to compare the performance of the scaling LSCV and reference approaches to plug-in and solve-the-equation (STE) bandwidth methods. We generated samples of 20, 50, and 150 points from mixtures of 2, 4, and 16 bivariate normal distributions. We selected the ranges of potential variances for these distributions to create 4 distribution types with varied levels of clumping to simulate the diversity of location patterns expected from radiotracking data. For most distribution types, plug-in and STE methods performed as well or better than LSCV in % absolute error of home-range size estimates and overlap of estimated and true utilization distributions. Although the relative differences usually were small, the plug-in and STE approaches provide good alternatives to LSCV. However, LSCV performed better with distribution types composed entirely of tight clumps of points. The reference bandwidth performed poorly for most distributions. Surprisingly, it often had the lowest absolute error at outer contours for distributions consisting of a single very tight cluster surrounded by more dispersed points. Although our results demonstrate the utility of plug-in and STE approaches, no method was best across all distributions. Rather, choice of a bandwidth selection method may vary depending on the study goals, sample size, and patterns of space use by the study species. In general, we recommend plug-in and STE approaches for estimating relatively smooth outer contours. The LSCV approach is better at identifying tight clumps, including areas of peak use, although risk of LSCV failure also increases when a distribution has a very tight cluster of points. When planning to use kernel methods, researchers should consider these factors to make preliminary decisions about the bandwidth method expected to be most appropriate in their study. (JOURNAL OF WILDLIFE MANAGEMENT 70(5):1334–1344; 2006)
منابع مشابه
Evaluation of Root-n Bandwidth Selectors for Kernel Density Estimation
The kernel density estimator is used commonly for estimating animal utilization distributions from location data. This technique requires estimation of a bandwidth, for which ecologists often use least-squares cross-validation (LSCV). However, LSCV has large variance and a tendency to under-smooth data, and it fails to generate a bandwidth estimate in some situations. We compared performance of...
متن کاملAnalysis of Resource Selection Using Utilization Distributions
Often resource selection functions (RSFs) are developed by comparing resource attributes of used sites to unused or available ones. We present alternative approaches to the analysis of resource selection based on the utilization distribution (UD). Our objectives are to describe the rationale for estimation of RSFs based on UDs, offer advice about computing UDs and RSFs, and illustrate their use...
متن کاملEstimating Utilization Distributions With Kernel Versus Local Convex Hull Methods
Estimates of utilization distributions (UDs) are used in analyses of home-range area, habitat and resource selection, and social interactions. We simulated data from 12 parent UDs, representing 3 series of increasingly intense space-use patterns (clustering of points around a home site, restriction of locations to a network of nodes and corridors, and dominance of a central hole in the UD) and ...
متن کاملDiscrimination of time series based on kernel method
Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...
متن کاملA Rule-of-Thumb for the Variable Bandwidth Selection in Kernel Hazard Rate Estimation
In nonparametric curve estimation the decision about the type of smoothing parameter is critical for the practical performance. The nearest neighbor bandwidth as introduced by Gefeller and Dette 1992 for censored data in survival analysis is specified by one parameter, namely the number of nearest neighbors. Bandwidth selection in this setting is rarely investigated although not linked closely ...
متن کامل